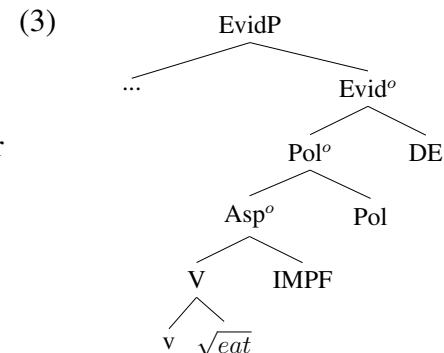


## Spurious inwardly syntactic-feature-sensitive allomorphy in Rnga.ba Amdo-Tibetan

**1. Introduction** Bobaljik (2000) argues that contextual allomorphy can be outwardly sensitive to only syntactic features and inwardly sensitive to only morpho-(phono)logical features. He argues that this is the result of three principles of morphology, namely **Separation**, **Cyclicity** and **Rewriting**: In a nutshell, these principles state that morphology interprets a complete syntactic structure cyclically root-outwards, replacing abstract syntactic features with vocabulary items. A consequence of these principles is that the allomorphy conditioning of a particular lexical item cannot refer inwardly to any syntactic features, but only the morpho-phonological features of vocabulary items that replaced them. This statement has been challenged by several authors (Harizanov & Gribanova 2014; Winchester 2017; Banerjee 2020), citing cases from various languages where contextual allomorphy seems to be inwardly sensitive to some syntactic features. Those examples seem to challenge the *rewriting* principle. However, Bobaljik (2000) himself does address an apparent counter-example like those from Chukchi, and argues that it is not a real case of inwardly syntactic-feature-sensitive allomorphy, as it can be analyzed as an inward sensitivity to some morphological information associated with the seemingly conditioning syntactic features. In other words, such a case of apparent inward syntactic-feature-sensitive allomorphy could be **spurious**.


This study examines a similar case of apparent inward syntactic-feature-sensitivity from **Rnga.ba Amdo-Tibetan (RAT)**, and argues that it could be spurious in the same way. I show that it is not only feasible, but also conceptually more desirable to analyze it **not** as inwardly sensitive to a syntactic category, even though that is a tempting analysis. Given cases like this, I also argue that we should carefully reconsider the falsifying conditions of Bobaljik (2000) and previous apparent ‘counter-examples’.

## 2. Clausal structure and verbal morphology of Rnga.ba Amdo-Tibetan

Rnga.ba Amdo-Tibetan (RAT) is a variety of Amdo-Tibetan spoken in the Rnga.ba county in Sichuan province, China. All RAT data came from original fieldwork. RAT is an ergative SOV language and one of its verbal inflection templates is given in (1), which is exemplified by (2). I analyze the verbal complex as spelling out the highest Evid<sup>o</sup> head formed by head movements, containing the root along with all functional heads in between. Note that there isn’t enough evidence for the existence of a tense projection in this language, as there aren’t particular morphemes associated with different tenses. Also note that for some independent reasons, I analyze ‘-jot’ as a positive polarity morpheme heading the polarity projection, occupying the same syntactic slot as the negation marker ‘-met’.

(1) ... V-Aspect-Polarity-Evidentiality.

(2) ptṣa.ci-γə kə-çə za-γə-jot/met-kə  
Bkra.shis-ERG apple eat-IMPF-POS/NEG-DE  
‘Bkra.shis is/is not eating apples.’ (As the speaker  
directly perceives)



**3. Two cases of allomorphy in RAT** In RAT, it appears that the Direct Evidence (DE) marker exhibits allomorphy sensitive to aspect, so do some verbs including ‘za’ (to eat): In perfect and perfective aspects, DE is realized as ‘-ta’, and ‘to eat’ is realized as ‘-zu’, as in (4), (5); In imper-

fective and generic aspects, DE is realized as ‘-Kə’, and ‘to eat’ takes the default form ‘-za’, as in (6), (7). Although not all verbs in RAT exhibit such an allomorphy, there is a significant amount of them and it is infeasible to exhaustively list all. Examples include ‘ndzo/sɔŋ’ (to go), ‘sta/wti’ (to read), ‘ndzən/wzɔŋ’ (to memorize) etc..

|                                                                                                                            |                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| (4) pt̪sa.ci-yə kə-çə <b>zu</b> -Ø-jot- <b>ta</b><br>Bkra.shis-ERG apple eat-PFV-POS-DE<br>‘Bkra.shis ate apples.’         | (6) pt̪sa.ci-yə kə-çə <b>za</b> -Ø- <b>yə</b><br>Bkra.shis-ERG apple eat-GNR-DE<br>‘Bkra.shis apparently eats apples.’     |
| (5) pt̪sa.ci-yə kə-çə <b>zu</b> -zak-jot- <b>ta</b><br>Bkra.shis-ERG apple eat-PRF-POS-DE<br>‘Bkra.shis has eaten apples.’ | (7) pt̪sa.ci-yə kə-çə <b>za</b> -yə-jot- <b>kə</b><br>Bkra.shis-ERG apple eat-IMPF-POS-DE<br>‘Bkra.shis is eating apples.’ |

**4. Analysis** Just by looking at the paradigm in §3, together with cases like (8), (9) where the verb doesn’t exhibit allomorphy, it is very tempting to analyze DE allomorphy as inwardly sensitive to the aspect feature, which would appear to be a counter example to Bobaljik (2000)’s consequence. However, such an analysis is conceptually undesirable that under such an analysis, it would be a suspicious coincidence that these two cases of allomorphy in §3 both came into existence in RAT and are sensitive to the same syntactic category. Furthermore, note that a particular aspect feature always gives rise to the same allomorphs of the verb and DE: observe from §3 that ‘zu’ always appears with ‘-ta’, and ‘za’ always appears with ‘-Kə’. If these two allomorphy conditionings are synchronously unrelated, nothing would exclude a particular aspect value from triggering the ‘zu’ form of ‘to eat’ together with the ‘-Kə’ form of DE. Under this inwardly-sensitive analysis, such a strict bundling of allomorphs would be a even more suspicious coincidence.

|                                                                                                                                  |                                                                                                                                    |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| (8) pt̪sa.ci-yə k <sup>h</sup> aj.nə<br>Bkra.shis-ERG house<br>li-zak-jot-ta<br>make-PFV-POS-DE<br>‘Bkra.shis has built houses.’ | (9) pt̪sa.ci-yə k <sup>h</sup> aj.nə<br>Bkra.shis-ERG house<br>li-yə-jot-kə<br>make-IMPF-POS-DE<br>‘Bkra.shis is building houses.’ |
|----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|

Therefore, a better analysis is that the verb allomorphy is conditioned on the aspect, and DE allomorphy is inwardly sensitive to a piece of morphological information on the verb associated with the verb allomorphy. The implementation is shown in (10) and (11). Note that verbs that have the same form with and without [\*] like ‘li’ (to make) should be understood as cases of idiosyncratic syncretism. Given this analysis, the co-existence of two cases of allomorphy and the strict bundling of respective allomorphs directly follow.

(10)  $\left[ v_{(*)} \sqrt{\quad} \right] \text{ASP POS EVID}$   
sensitive to [\*]

**5. Theoretical implication** This study shows that pairs like (8) and (9) in a language aren’t sufficient for falsifying Bobaljik (2000)’s generalization that there can’t be inwardly syntactic-feature-sensitive allomorphy. This prompts us to **reconsider the falsifying condition of this generalization**: a true counter-example would be when the apparent lower conditioning syntactic features for X’s allomorphy are not mapped to a set of morphological features in the appropriate locality domain for X’s allomorphy that can reliably give rise to the same allomorphy conditioning patterns. **Sel. refs.:** Banerjee, N. 2020. Ellipsis As.; Tribur, Z. 2019. Verbal morphology.; Winchester, L. 2017. Morphosyntactic Features.;

(11)

- a.  $v \leftrightarrow v_{(*)} /_{[\text{PRF}] \mid [\text{PFV}]}$
- b.  $v \sqrt{\text{eat}} \leftrightarrow \text{za}$
- c.  $v_{(*)} \sqrt{\text{eat}} \leftrightarrow \text{zu}$
- d.  $v \sqrt{\text{make}} \leftrightarrow \text{li}$
- e.  $v_{(*)} \sqrt{\text{make}} \leftrightarrow \text{li}$
- f.  $[\text{DE}] \leftrightarrow -\text{Kə}$
- g.  $[\text{DE}] \leftrightarrow -\text{ta}/[*]_$